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LETTER TO THE EDITOR 

On the critical region of systems with two order parameters 
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Institute of Solid State Physics, Bulgarian Academy of Sciences, 1184 Sofia, Bulgaria 

Received 22 December 1980 

Abstract. The critical region in the disordered phase near bicritical and tetracritical points is 
obtained. For this purpose the condition for the validity of the Ornstein-Zernike approxi- 
mation for the correlation functions is used. The consideration holds for 2 <  d < 4  dimen- 
sions of space. The effect of the interaction between the two orderings near the multicritical 
points is discussed. 

Recently, the systems with two second-order phase transitions where bicritical and 
tetracritical points appear are of current experimental and theoretical interest. The 
intrinsic features of these multicritical points are contained in the following Ginzburg- 
Landau (GL) Hamiltonian 

Xip= -- ddX{aycp: +~1(Vcpl )~+2~ lcpf  +~icp; +~2(Vcp2)~+2~2cp24 +~w(P:(P;)  (1) 
2 ' I  

where the factor ( - l /KBT) is absorbed in X. The order parameters cpi(x)(i = 1 , 2  
hereafter) depends on the coordinate x in the d-dimensional space. The order 
parameters cpl(x) and cpz(x) are assumed to be n l -  and n2-component real fields, 
respectively. The parameters in (1) are analytic functions of the thermodynamic 
variables-the temperature T and the additional ones (like pressure etc) which we shall 
denote by 5. As usual, ay = ai( T - T:i), the superscript zero denoting the bare values of 
the critical temperatures TZi (E TZi (5)) as other bare quantities here. For the renor- 
malised quantities the superscript zero will be omitted. 

The simplest theoretical analysis of the Hamiltonian (1) is performed in the 
mean-field approximation that is widely discussed by Liu and Fisher (1973) and by Imry 
(1975). The Wilson renormalisation group analysis of this Hamiltonian is also 
developed (e.g. Kosterlitz eta1 1976, see also Patashinsky and Pokrovsky 1977a, b and 
the references therein). The Ornstein-Zernike (oz) approximation (often refered to as 
the Gaussian approximation) is also used when some non-universal properties of the 
fields pi are studied. 

The Hamiltonian (1) describes a large number of real systems. Many of them are 
listed and studied in the papers mentioned above. Further examples are, for instance, 
the superconducting compounds with long-range magnetic orderings, say, rare-earth 
molybdenum chalcogenides with the formula R E  MosXs (RE being rare-earth ion(s) 
and X = S, Se; see Fisher et a1 (1975) and Shelton et a1 (1976)) or rare-earth rhodium 
borides RE Rh4B4 (Mattias et a1 1977). For the theoretical investigation of these 
compounds microscopic models are used, where fluctuations near the superconducting 
phase transition and far from the multicritical points are neglected (e.g. Maekawa and 
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Tachiki 1978, Youngner and Machida 1979, Machida 1979). In a recent paper, using 
Hamiltonian (1) for three-dimensional ferromagnetic superconductors Hornreich and 
Schuster (1979) point out a great enlargement of the critical region for the super- 
conducting order parameter (say ql). This enlargement makes it possible to look for an 
experimental observation of the three-dimensional superconducting fluctuations, for 
instance, in the superconducting compounds mentioned above. Then the question of 
determining the size of the critical region near multicritical points arises. In the 
disordered phase this problem reduces to an investigation of the applicability of the oz 
approximation near bicritical and tetracritical points. 

The critical region of an ordinary second-order phase transition is well known 
(Levanyuk 1959, Ginzburg 1960a, b). This subject is discussed in many other papers 
(see Amit 1974 and the references therein). 

Here we estimate the critical region in the disordered phase near the multicritical 
points where the oz approximation for the correlation functions of Hamiltonian (1) 
breaks down. We shall discuss the critical region near the shifted (renormalised) 
bicritical and/or tetracritical points (TC, f c )  and near the transition lines T c i ( f ) .  The 
consideration is referred to 2 < d < 4 dimensions of space. The Hamiltonian (1) has a 
symmetry with respect to the change of the suffices 1 and 2. Then the results connected 
with the first phase transition (i = 1) correspond to the second phase transition (i = 2) 
after the change (1 7+ 2). 

For our purposes we consider Dyson's equation for the correlation function xl(q) of 
the field q l ( 4 )  in momentum space, namely, 

where &(q, T )  is the self-energy function. The reverse correlation function xT1 (0) is 
equal to zero at the (true) renormalised transition line T c l ( f )  separating the disordered 
phase from the ordered one. From equation (2) it follows that 

ai(Tcl- T,O, ) - L ( O ,  Tci) 0 (3 )  

on the transition line T c l ( f ) .  Subtraction of equation (3) from equation (2) leads to the 
expression 

x;" = xi"'-' (4 )  - A&(q, T )  

xlO'(q) = (ai +c&' (at =ai(T- T c i ) )  ( 5 )  

(4) 
where 

is the oz approximation for the correlation functions xi(q) with the renormalised 
critical temperatures Tci, 

AXi(q, T )  = A&(T) + AZi(q) (6) 

AZi(T)=L(O,  -)--&(O, Tci) (7) 

A&(q) = &(q, T )  - &(O, T). (8) 

ciq2 >> lA&(q)l (9) 

with 

and 

For the oz form (6) to be valid one has to require 
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and 

ai  >> IAZi(T)I. (10) 

The inequalities (9) and (10) are common criteria for the validity of the oz approxima- 
tion for the correlation function x1 of any GL Hamiltonian. The quantity AZ1(q) in (9) is 
of order ( U ? ,  w2, U ~ W )  while AZ1(T) in (10) is of order ( U ( ,  w). As in the derivation of the 
Ginzburg-Levanyuk criterion for the one-field GL Hamiltonian (see e.g. Amit 1974) 
here we shall consider only the first-order contributions in AXl(q, T). 

In the framework of the model (1) the following expression for &(T) is obtained 

z?)(T) = - 4 ( n l + 2 ) u l ~ ( a l ) - 4 n 2 w ~ ( a 2 )  (11) 
where 

A 

J ( a i )  = dq(ciq2 + ai)-' 
0 

(5 dq = ( 2 ~ ) - ~ 5  ddq, A is the momentum cut-off). 

obtain for equation (3) the expression 
Below, without loss of generality, we shall assume T,, Tcz. Using (11)-(12) we 

where A(d) = 22-dr1-d/2r-1(&4, T(z) is the gamma function and 50i/(2Tci)1/2 = 
( C ~ / ~ T , ~ C U ~ ) ' / ~  are the zeroth (T  = 0) correlation lengths of the decoupled (w = 0) system 
(1). The last term in (13) vanishes in the multicritical point (Tc, 5,) where T,, = 
T,,(=Tc). Equation (13) for Tcl gives a straightforward generalisation of the well 
known shift (T:, - Tcl) obtained by Vaks eta1 (1967). For an explicit expression for T,, 
(in particular for T,) to be obtained one has to determine the parameters of Hamiltonian 
(1) as functions of T and 5. This may be achieved when a microscopic analysis of the 
considered system is carried out. 

From (11)-(12) we obtain a concretisation of the inequality (10): 

where 

The criterion (14) for the validity of the oz approximation is not an explicit expression 
for (T - Tcl). It is seen from equations (14)-(16) that for w = 0 equation (14) is reduced 
to the well known Ginzburg-Levanyuk criterion. Then the critical region is determined 
by the inequality (T - Tcl)(u-d)/2 C Au,. We shall briefly comment on three particular 
cases that recover the most essential features of criterion (14): 
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(i) Far from the multicritical point, i.e. (Tcl - Tc2) >> ( T  - Tcl). Then from inequality 
(14) it is easy to obtain for (T - Tcl) 

where 

Expression (17) is a Ginzburg-Levanyuk form with a renormalised coupling constant 
(according to (18)). The expression for U"I is valid if the second term in the denominator 
is less than unity. From equations (17)-(18) we see that the fluctuations pl  are already 
perturbed by the coupling w and the critical region of the first (i = 1) phase transition 
increases. 

(ii) Near the multicritical point, i.e. ( TCl - Tc2) << (T  - Tcl). In this case we present 
the explicit expression for ( T  - T,I) in three dimensions (d = 3) of space 

The inequality (19) is valid if the second term in the large brackets is less than unity, 
namely, for sufficiently small values of (Tcl - TCJ.  

Now we assume the critical region of the second phase transition (i = 2) to be wider 
than that of the first phase transition (i = l), namely, we shall consider the case tO1 >> tO2. 
Then we find from (19) 

In this case as it follows from (20) the critical region of the first phase transition depends 
on the correlation length to2 instead of tole As a result of the inequality tO1 tO2 it 
increases. Let us now compare the sizes of the critical regions: (T  - T,,),, for the field 
9 1 ,  ( T -  Tc,),=o, for the field cpl when w = 0 and ( T -  Tc2)w=o, the critical region for the 
field pz in thecase w = O .  Note, that: ( T - T c l ) w ~ o = A u l  and (T-T,,),=o=A,,, where 
A,, is obtained by the change (1&2) in (15). Using (19) and (20) we have 

and 

From (21) it is obvious that the critical region of p1 is greatly enlarged (.$01>>502). 
Assuming ( Y Z W  - ( t l u z  we see from (22) that the critical region (T-Tc1) ,  becomes 
comparable with ( T -  Tc,)w=o. This result is obtained by Hornreich and Schouster 
(1979) for T,, = T,, = T,. If we assume, in addition to the inequality TOl : tO2, that we 
have the particular case u1 - uz  w of the bicritical behaviour then it follows from (22) 
that the critical region ( T -  T,,), may become wider than that of the field p2. In 
comparison with the case (1) the influence of the quantity (Tcl - Tcz) here (see equations 
(21) and (22)) is in the opposite direction, i.e. it suppresses the effect of the enlargement. 
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(iii) On the multicritical point, i.e. T,, = T,, = T,. First of all the expression for T, 
can be obtained both from equation (13) and from the analogous one for T,, which 
follows from (13) after the change (1 e 2). Then in addition to the expression for T, we 
obtain the following constraint for the parameters U ; ,  w, ci and ai. 

Using equation (23) one may find the coordinate &of the multicritical point (T,, l,). For 
this purpose the explicit dependence of ui, w, ci and ai on l is necessary. 

Using (14) and the corresponding inequality for (T  - TcJ we obtain an estimate for 
the critical region around T,, namely, 

max{A,, + Aw, Au2 + Awl .  (24) 

For u1 = u2 = w ,  c1 = c2  and a1 = az ,  the inequality (24) defines the critical region of an 
ordinary second-order phase transition. If col >: co2, from (24) we have 

(7' - T,) ( 4 - d ) / 2  5 

for the critical region. 
Note that for T,, = T,, = T,, the corresponding expressions (21) and (22) may be 

written in 2 d 4 dimensions of space. 
From an experimental point of view the possibility for a great enlargement of the 

critical region of a second-order phase transition near bicritical and tetracritical point is 
of special interest. This effect is maximally pronounced when the temperature of the 
two phase transitions coincide (case (iii)). However this case is extremely rarely realised 
in nature. Usually T,, and T,, are different. We have shown that the enlargement of the 
critical region takes place also when T,, # T,, (case (2)) but it becomes negligible as the 
difference between T,, and T,, increases (case (i)). 

Here we have presented a part of the problem for determination of criteria for the 
validity of the mean-field and the oz approximations near bicritical and tetracritical 
points. The following should be noted. 

(i) The problem is not restricted only in the framework of the Hamiltonian (1). 
Other GL forms describing bicritical and tetracritical points are also possible. Such as, 
for example, the GL forms for the exitonic superconductor (see Kopayev and Molotkov 
1979) and for the exitonic ferromagnet in a magnetic field (Volkov et a1 1980). 

(ii) A full discussion of the problem requires determination of the critical regions 
for other quantities (e.g. specific heat, etc) and an investigation of the ordered phases 
too. 

The authors would like to thank Professors V L Ginzburg and V L Pokrovsky for useful 
discussions, and Dr J G Brankov for the critical reading of the manuscript. 
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